- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Hwang, Jonghyun (3)
-
Stone, Howard A (2)
-
Altomare, Mariana (1)
-
Ha, Jonghyun (1)
-
Kim, Yun Seong (1)
-
Nunes, Janine K (1)
-
Siu, Ryan (1)
-
Slutzky, Malcolm (1)
-
Tawfick, Sameh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Slutzky, Malcolm; Hwang, Jonghyun; Stone, Howard A; Nunes, Janine K (, Langmuir)
-
Hwang, Jonghyun; Ha, Jonghyun; Siu, Ryan; Kim, Yun Seong; Tawfick, Sameh (, Physics of Fluids)The diverse chemical and physical reactions encountered during cooking connect us to science every day. Here, we theoretically and experimentally investigate the swelling and softening of pasta due to liquid imbibition as well as the elastic deformation and adhesion of pasta due to capillary force. As water diffuses into the pasta during cooking, it softens gradually from the outside inward as starch swells and relaxes. The softening follows three sequential regimes: regime I, the hard-glassy region, shows a slow decrease in modulus with cooking time; regime II, the glassy to rubbery transition region, or leathery region, is characterized by a very fast, several orders of magnitude drop in elastic modulus and regime III, the rubbery region, has an asymptotic modulus about four orders of magnitude lower than the raw pasta. We present experiments and theory to capture these regimes and relate them to the heterogeneous microstructure changes associated with swelling. Interestingly, we observe a modulus drop of two orders of magnitude within the range of “al dente” cooking duration, and we find the modulus to be extremely sensitive to the amount of salt added to the boiling water. While most chefs can gauge the pasta by tasting its texture, our proposed experiment, which only requires a measurement with a ruler, can precisely provide an optimal cooking time finely tuned for various kinds of pasta shapes.more » « less
An official website of the United States government
